Using ensembles to make objective releases decisions on Lake Tahoe

Caleb Erkman, PE

Precision Water Resources Engineering

www.precisionwre.com

RiverWare User Group Meeting

August 28-29, 2019

Outline

- Ensemble Streamflow Prediction (ESP) Forecasts
- ESP Uses
- Lake Tahoe Characteristics and Requirements
- ESP Operational Alternatives
- WY2019 Forecast Review

Ensemble Steamflow Prediction (ESP)

• California-Nevada River Forecast Center (CNRFC)

3

P

W

R

Ε

ESP – What is it good for?

- Common Uses:
 - Uncertainty propagation
 - Outreach and communication
 - Temporal disaggregation
 - What-if analysis
 - Alternative to statistical runoff volume forecasts

• Question:

- Are they a "Novelty?"
- Can they be used for objective operational decisions?

P

W

R

Ε

Tahoe Characteristics and Requirements

- Large natural lake
- 6.1' tall dam
- Storage behind dam: 744,000 acre-feet
- Drainage Area: 505 mi²
- 37% of basin is Lake Surface
- Release capacity: 2600 cfs
- 1" of runoff requires 6.5 days to release
- Policy requires that elevation 6229.1' be maintain "in-so-far as practicable"
- Tahoe is also the primary water supply reservoir on the Truckee River, so conservation is important.

*Map from NRCS

W | R | E

Lake Tahoe Operational Requirements

- Water years 2017-2019 each had sufficient inflow to fill the Lake
 - The Lake last filled in 2006, which was before ESP forecasts were made available by CNRFC
- Because of limited release capacity, releases need to be made well in advance of peak runoff
- Forecast uncertainty makes determination of releases difficult
- We needed to develop a method that utilizes ESP forecasts
 - This was done collaboratively over the past three years

WIR

Ε

Practical considerations

- In real life, releases can only be set to one thing at a time.
 - We can't simultaneously operate to ALL of the ESP traces
 - We must choose **one** release for right now
- There is some finite amount of time that must pass before there is enough **new** information to warrant a release change
 - This is subjective and not well defined
 - For this analysis we generally used the First of the month NRCS-RFC coordinated forecast.
 - In practice, mid-month forecasts were used as well.

Two alternative methods:

- "Release for Median"
 - Run each ESP trace through the model to determine the required release
 - Set the release to the median of the required releases
 - "Consider" the other traces to analyze and be aware of risks
 - Choose the "most likely" or "normal" trace

- "Optimized Release"
 - Determine the release that could be held the longest before you need it needs to be changed to either the maximum or minimum release in any ESP trace
 - Requires trial and error or iterative runs of the ESP traces

WR

E

Method Evaluation

- 1. Number of days release could be held
 - A release that can be held longer increases the time before you are forced to make a change
 - This should be maximized
- 2. Probability of being within Constraints
 - Percentage of ESP traces where the release that you must change to with the next forecast is within the constraints (maximum and minimum releases)
 - If the reaction release > maximum release -> risk exceeding 6229.1'
 - If the reaction release < minimum release -> risk of not filling
- 3. Range of required releases
 - It is better for downstream users to limit major changes in release

WR

February 26 Forecast

W

P

R

Ε

April 5 Forecast

1

8/29/2019

W

P

R

E

RiverWare User Group 2019

May 7 Forecast

W

P

June 4 Forecast

8/29/2019

P

W

RE

June 12 Forecast

P

W

RE

Review:

*For actual releases, the 14-day precipitation forecasts were referenced to inform which part of the distribution was more likely (wet or dry) and some of the traces were thrown out accordingly.

WRE

P |

Conclusion

- Operating to the median trace does not equally protect against the high and low end of the distribution
 - This is partially because of the statistical skew
 - It may not be apparent that there is a problem until it is too late
- Choose the release that can be maintained the longest, before changing for either the largest or smallest trace.
 - Able to increase this period by 6 to 14 days for the May 7, June 4 and June 12 forecasts
- Using ESP forecasts to determine Tahoe releases, allows us to:
 - Reduce risks of over/under filling
 - Have fewer swings in releases
 - Provide better flows downstream
- Similar methods may be applicable to other reservoir operational questions

R

E

Questions?

Thanks to:

Lahontan Basin Area Office

Federal Water Master Office – Reno, NV

- Chad Blanchard
- Dave Wathen
- Pat Fritchel

References:

WRE

P |

- Hartman, Rob. 2008. "Publications." *California Nevada River Forecast Center*. April 29. Accessed 1 1, 2019. <u>https://www.cnrfc.noaa.gov/publications/hepex1_rhartman.pdf</u>.
- Natural Resources Conservation Service, Accessed 8 27, 2019.
- Super Star image, Accessed 8 27, 2019. <u>https://mario.fandom.com/wiki/Super_Star</u>

8/29/2019

RiverWare User Group 2019

